

## MEaSUReS Land Surface Temperature and Emissivity data records

<u>Kerry Cawse-Nicholson</u>, Jet Propulsion Laboratory, California Institute of Technology Glynn Hulley, Jet Propulsion Laboratory, California Institute of Technology Simon Hook, Jet Propulsion Laboratory, California Institute of Technology

© 2017 California Institute of Technology. Government sponsorship acknowledged.

#### **Co-Investigators**

- Eva Borbas University of Wisconsin-Madison
- Robert Knuteson University of Wisconsin-Madison
- Michelle Feltz University of Wisconsin-Madison
- Rachel Pinker University of Maryland
- Martha Anderson United States Department of Agriculture
- Chris Hain NASA Marshall Space Flight Center







Marshall Space Flight Center





### MEaSUREs: Making Earth System Data Records for Use in Research Environments

A Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR) for Earth Science:

| ESDR             | Spatial<br>Resolution | Coverage     | Temporal<br>Resolution                    | Time Period |
|------------------|-----------------------|--------------|-------------------------------------------|-------------|
| LEO LST          | 1 km                  | Global       | Daily, 8-day                              | 2000-2017   |
| GEO LST          | 5 km                  | N/S. America | N. America-hourly,<br>S. America-3 hourly | 2000-2017   |
| CAMEL Emissivity | 5 km                  | Global       | Monthly                                   | 2000-2017   |

# Combined ASTER MODIS Emissivity for Land (CAMEL)

- Produced by merging the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4)
- 0.05-degree resolution 417 bands, 3.6-14.3 μm
- Available for download from LP DAAC

#### **CAMEL** current and future users

| Institution            | Intended Use/Implementation                                                                             |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| UK Metoffice           | Implemented in RTTOV radiative transfer code                                                            |  |  |
| NUCAPS team            | Testing in NOAA sounder atmospheric retrieval scheme (IASI, SNPP, AIRS)                                 |  |  |
| EUMETSAT               | IASI L2 retrieval first guess                                                                           |  |  |
| NOAA CRTM              | Used in forward model of the Community Radiative Transfer Model                                         |  |  |
| NOAA NCEI<br>EC<br>NRL | HIIRS climate data record Environmental Canada, data assimilation Naval Research Lab, data assimilation |  |  |
| <b>Meteo-France</b>    | Data assimilation                                                                                       |  |  |
| DWD                    | German Meteorological Office data assimilation                                                          |  |  |
| SSEC/GEOCAT            | Radiative transfer                                                                                      |  |  |
| <b>EUMETSAT</b>        | MeteoSwiss Data assimilation                                                                            |  |  |
| Nanjing Univ.          | Research                                                                                                |  |  |
| CIMSS                  | MODIS atmospheric water vapor retrievals (MxD07)                                                        |  |  |
| JPL                    | LST retrievals and first guess in AIRS optimal estimation retrievals                                    |  |  |

#### **CAMEL** emissivity at 9.1 um for July 2004



#### **LEO-LST**

- MxD11 LST has low uncertainties over vegetation, but larger uncertainties over arid and semi-arid regions
- MxD21 LST has low uncertainty over arid areas, but higher uncertainties over graybody surfaces
- LEO-LST combines these products using an uncertainty analysis

#### **GEO-LST**

- Hourly time steps for N. America and 3hourly time steps for S. America
- GOES 8-15 sensors from 2000-2017
- The hourly GEO LST product is a key variable in the US drought monitoring system for estimating evapotranspiration (ET) over agricultural sectors

#### **GEO-LST processing**



#### **GEO-LST**



#### **Cloud mask**



12/15/2017 jpl.nasa.gov

#### **MODIS** and GOES LST Comparison (2005-05-03)



LST(K)

#### **MODIS and GOES LST Comparison (2005-05-03)**



### GEO-LST validated against MOD11 at Lake Huron (assumed emissivity = 0.98)

#### LakeHuronCenter-JPL500



Credit: Rachel Pinker, University of Maryland

### **Applications**



#### **Summary**

- MEaSUREs will provide LST at both high spatial and high temporal scales, as well as emissivity at high spectral resolution.
- Consistent, long-term data record.
- GEO-LST will be provided hourly over North America (3-hourly over South America).
- Important for input into climatological models, drought monitoring, etc.



jpl.nasa.gov